Title: | Analyzes Real-World Treatment Patterns of a Study Population of Interest |
---|---|
Description: | Computes treatment patterns within a given cohort using the Observational Medical Outcomes Partnership (OMOP) common data model (CDM). As described in Markus, Verhamme, Kors, and Rijnbeek (2022) <doi:10.1016/j.cmpb.2022.107081>. |
Authors: | Aniek Markus [aut] |
Maintainer: | Maarten van Kessel <[email protected]> |
License: | Apache License (>= 2) |
Version: | 3.0.0 |
Built: | 2025-02-06 15:23:38 UTC |
Source: | https://github.com/darwin-eu/treatmentpatterns |
Class to handle the characterization plots.
TreatmentPatterns::ShinyModule
-> CharacterizationPlots
uiMenu()
Method to include a menuItem to link to the body.
CharacterizationPlots$uiMenu( label = "Characteristics", tag = "characteristics" )
label
(character(1)
)
Label to show for the menuItem
.
tag
(character(1)
)
Tag to use internally in input
.
(menuItem
)
uiBody()
Method to include a tabItem to include the body.
CharacterizationPlots$uiBody()
(tabItem
)
server()
Method to handle the back-end.
CharacterizationPlots$server(input, output, session, inputHandler)
input
(input
)
Input from the server function.
output
(output
)
Output from the server function.
session
(session
)
Session from the server function.
inputHandler
(inputHandler
)
InputHandler class.
(NULL
)
clone()
The objects of this class are cloneable with this method.
CharacterizationPlots$clone(deep = FALSE)
deep
Whether to make a deep clone.
Compute treatment patterns according to the specified parameters within specified cohorts.
computePathways( cohorts, cohortTableName, cdm = NULL, connectionDetails = NULL, cdmSchema = NULL, resultSchema = NULL, analysisId = 1, description = "", tempEmulationSchema = NULL, includeTreatments = "startDate", indexDateOffset = 0, minEraDuration = 0, splitEventCohorts = NULL, splitTime = NULL, eraCollapseSize = 30, combinationWindow = 30, minPostCombinationDuration = 30, filterTreatments = "First", maxPathLength = 5 )
computePathways( cohorts, cohortTableName, cdm = NULL, connectionDetails = NULL, cdmSchema = NULL, resultSchema = NULL, analysisId = 1, description = "", tempEmulationSchema = NULL, includeTreatments = "startDate", indexDateOffset = 0, minEraDuration = 0, splitEventCohorts = NULL, splitTime = NULL, eraCollapseSize = 30, combinationWindow = 30, minPostCombinationDuration = 30, filterTreatments = "First", maxPathLength = 5 )
cohorts |
(
|
cohortTableName |
( |
cdm |
( |
connectionDetails |
( |
cdmSchema |
( |
resultSchema |
( |
analysisId |
( |
description |
( |
tempEmulationSchema |
Schema used to emulate temp tables |
includeTreatments |
(
|
indexDateOffset |
( |
minEraDuration |
( |
splitEventCohorts |
( |
splitTime |
( |
eraCollapseSize |
( |
combinationWindow |
( |
minPostCombinationDuration |
( |
filterTreatments |
( |
maxPathLength |
( |
(Andromeda::andromeda()
)
andromeda object containing non-sharable patient level
data outcomes.
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
Create sankey diagram.
createSankeyDiagram( treatmentPathways, groupCombinations = FALSE, colors = NULL, ... )
createSankeyDiagram( treatmentPathways, groupCombinations = FALSE, colors = NULL, ... )
treatmentPathways |
( |
groupCombinations |
(
|
colors |
( |
... |
Paramaters for sankeyNetwork. |
(htmlwidget
)
# Dummy data, typically read from treatmentPathways.csv treatmentPathways <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) createSankeyDiagram(treatmentPathways)
# Dummy data, typically read from treatmentPathways.csv treatmentPathways <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) createSankeyDiagram(treatmentPathways)
New sunburstPlot function
createSunburstPlot(treatmentPathways, groupCombinations = FALSE, ...)
createSunburstPlot(treatmentPathways, groupCombinations = FALSE, ...)
treatmentPathways |
( |
groupCombinations |
(
|
... |
Paramaters for sunburst. |
(htmlwidget
)
# Dummy data, typically read from treatmentPathways.csv treatmentPatwhays <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) createSunburstPlot(treatmentPatwhays)
# Dummy data, typically read from treatmentPathways.csv treatmentPatwhays <- data.frame( pathway = c("Acetaminophen", "Acetaminophen-Amoxicillin+Clavulanate", "Acetaminophen-Aspirin", "Amoxicillin+Clavulanate", "Aspirin"), freq = c(206, 6, 14, 48, 221), sex = rep("all", 5), age = rep("all", 5), index_year = rep("all", 5) ) createSunburstPlot(treatmentPatwhays)
Compute treatment patterns according to the specified parameters within specified cohorts. For more customization, or investigation of patient level outcomes, you can run computePathways and export separately.
executeTreatmentPatterns( cohorts, cohortTableName, cdm = NULL, connectionDetails = NULL, cdmSchema = NULL, resultSchema = NULL, tempEmulationSchema = NULL, minEraDuration = 0, eraCollapseSize = 30, combinationWindow = 30, minCellCount = 5 )
executeTreatmentPatterns( cohorts, cohortTableName, cdm = NULL, connectionDetails = NULL, cdmSchema = NULL, resultSchema = NULL, tempEmulationSchema = NULL, minEraDuration = 0, eraCollapseSize = 30, combinationWindow = 30, minCellCount = 5 )
cohorts |
(
|
cohortTableName |
( |
cdm |
( |
connectionDetails |
( |
cdmSchema |
( |
resultSchema |
( |
tempEmulationSchema |
( |
minEraDuration |
( |
eraCollapseSize |
( |
combinationWindow |
( |
minCellCount |
( |
TreatmentPatternsResults
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (require("CirceR", character.only = TRUE, quietly = TRUE)) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") executeTreatmentPatterns( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) DBI::dbDisconnect(con, shutdown = TRUE) }
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (require("CirceR", character.only = TRUE, quietly = TRUE)) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") executeTreatmentPatterns( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) DBI::dbDisconnect(con, shutdown = TRUE) }
Export andromeda generated by computePathways object to sharable csv-files and/or a zip archive.
export( andromeda, outputPath = NULL, ageWindow = 10, minCellCount = 5, censorType = "minCellCount", archiveName = NULL, nonePaths = FALSE, stratify = FALSE )
export( andromeda, outputPath = NULL, ageWindow = 10, minCellCount = 5, censorType = "minCellCount", archiveName = NULL, nonePaths = FALSE, stratify = FALSE )
andromeda |
( |
outputPath |
( |
ageWindow |
( |
minCellCount |
( |
censorType |
(
|
archiveName |
( |
nonePaths |
( |
stratify |
( |
TreatmentPatternsResults
object
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) results <- export( andromeda = outputEnv ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { library(TreatmentPatterns) library(CDMConnector) library(dplyr) withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) results <- export( andromeda = outputEnv ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
Gets the results data model specifications of TreatmentPatterns
.
getResultsDataModelSpecifications()
getResultsDataModelSpecifications()
data.frame
{ getResultsDataModelSpecifications() }
{ getResultsDataModelSpecifications() }
Class to handle input from the user. Supports direct paths or input fields
through setDataPath()
.
TreatmentPatterns::ShinyModule
-> InputHandler
reactiveValues
(reactiveValues
)
reactiveValues class created by reactiveValues.
uiMenu()
Method to include a menuItem to link to the body.
InputHandler$uiMenu(label = "File upload", tag = "fileUpload")
label
(character(1)
)
Label to show for the menuItem
.
tag
(character(1)
)
Tag to use internally in input
.
(menuItem
)
uiBody()
Method to include a tabItem to include the body.
InputHandler$uiBody()
(tabItem
)
server()
Method to handle the back-end.
InputHandler$server(input, output, session)
input
(input
)
Input from the server function.
output
(output
)
Output from the server function.
session
(session
)
Session from the server function.
(NULL
)
uiDatabaseSelector()
Method to include a uiOutput to select between multiple uploaded files.
InputHandler$uiDatabaseSelector()
(uiOutput
)
setDataPath()
Method to dictate where the data is coming from, either from the input
through the shiny application, or from a specified path. When one is
provided, the other is ignored.
InputHandler$setDataPath(tag = "uploadField", input = NULL, path = NULL)
tag
(character(1)
)
Tag to use internally in input
.
input
(input
)
Input from the server function of the shiny app.
path
(character(1)
)
Path to a zip-file containing TreatmentPatterns output files.
(invisible(self)
)
clone()
The objects of this class are cloneable with this method.
InputHandler$clone(deep = FALSE)
deep
Whether to make a deep clone.
Launches the ResultExplorer shinyApp.
launchResultsExplorer()
launchResultsExplorer()
(shinyApp
)
if (interactive()) { launchResultsExplorer() }
if (interactive()) { launchResultsExplorer() }
plotEventDuration
plotEventDuration( eventDurations, minCellCount = 0, treatmentGroups = "both", eventLines = NULL, includeOverall = TRUE )
plotEventDuration( eventDurations, minCellCount = 0, treatmentGroups = "both", eventLines = NULL, includeOverall = TRUE )
eventDurations |
( |
minCellCount |
( |
treatmentGroups |
( |
eventLines |
( |
includeOverall |
( |
ggplot
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) results <- export(outputEnv) plotEventDuration( eventDurations = results$summary_event_duration, minCellCount = 5, treatmentGroups = "group", eventLines = 1:4, includeOverall = FALSE ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
ableToRun <- all( require("CirceR", character.only = TRUE, quietly = TRUE), require("CDMConnector", character.only = TRUE, quietly = TRUE), require("TreatmentPatterns", character.only = TRUE, quietly = TRUE), require("dplyr", character.only = TRUE, quietly = TRUE) ) if (ableToRun) { withr::local_envvar( R_USER_CACHE_DIR = tempfile(), EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile()) ) tryCatch({ if (Sys.getenv("skip_eunomia_download_test") != "TRUE") { CDMConnector::downloadEunomiaData(overwrite = TRUE) } }, error = function(e) NA) con <- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir()) cdm <- cdmFromCon(con, cdmSchema = "main", writeSchema = "main") cohortSet <- readCohortSet( path = system.file(package = "TreatmentPatterns", "exampleCohorts") ) cdm <- generateCohortSet( cdm = cdm, cohortSet = cohortSet, name = "cohort_table" ) cohorts <- cohortSet %>% # Remove 'cohort' and 'json' columns select(-"cohort", -"json") %>% mutate(type = c("event", "event", "event", "event", "exit", "event", "event", "target")) %>% rename( cohortId = "cohort_definition_id", cohortName = "cohort_name", ) %>% select("cohortId", "cohortName", "type") outputEnv <- computePathways( cohorts = cohorts, cohortTableName = "cohort_table", cdm = cdm ) results <- export(outputEnv) plotEventDuration( eventDurations = results$summary_event_duration, minCellCount = 5, treatmentGroups = "group", eventLines = 1:4, includeOverall = FALSE ) Andromeda::close(outputEnv) DBI::dbDisconnect(con, shutdown = TRUE) }
Class to handle the Sankey diagram of TreatmentPatterns.
TreatmentPatterns::ShinyModule
-> TreatmentPatterns::InteracitvePlot
-> SankeyDiagram
clone()
The objects of this class are cloneable with this method.
SankeyDiagram$clone(deep = FALSE)
deep
Whether to make a deep clone.
ShinyModule super class
namespace
Namespace of the module.
new()
Initializer method
ShinyModule$new(namespace)
namespace
(character(1)
)
(invisible(self)
)
validate()
Validator method
ShinyModule$validate()
(invisible(self)
)
uiMenu()
Method to include a menuItem to link to the body.
ShinyModule$uiMenu(label, tag)
label
(character(1)
)
Label to show for the menuItem
.
tag
(character(1)
)
Tag to use internally in input
.
(menuItem
)
uiBody()
Method to include a tabItem to include the body.
ShinyModule$uiBody()
(tabItem
)
server()
Method to handle the back-end.
ShinyModule$server(input, output, session)
input
(input
)
Input from the server function.
output
(output
)
Output from the server function.
session
(session
)
Session from the server function.
(NULL
)
clone()
The objects of this class are cloneable with this method.
ShinyModule$clone(deep = FALSE)
deep
Whether to make a deep clone.
Class to handle the Sunburst plot of TreatmentPatterns.
TreatmentPatterns::ShinyModule
-> TreatmentPatterns::InteracitvePlot
-> SunburstPlot
clone()
The objects of this class are cloneable with this method.
SunburstPlot$clone(deep = FALSE)
deep
Whether to make a deep clone.
Houses the results of a TreatmentPatterns
analysis. Each field corresponds
to a file. Plotting methods are provided.
attrition
(data.frame
)
metadata
(data.frame
)
treatment_pathways
(data.frame
)
summary_event_duration
(data.frame
)
counts_age
(data.frame
)
counts_sex
(data.frame
)
counts_year
(data.frame
)
cdm_source_info
(data.frame
)
analyses
(data.frame
)
arguments
(list
)
new()
Initializer method
TreatmentPatternsResults$new( attrition = NULL, metadata = NULL, treatmentPathways = NULL, summaryEventDuration = NULL, countsAge = NULL, countsSex = NULL, countsYear = NULL, cdmSourceInfo = NULL, analyses = NULL, arguments = NULL, filePath = NULL )
attrition
(data.frame
) attrition result.
metadata
(data.frame)
) metadata result.
treatmentPathways
(data.frame)
) treatmentPathways result.
summaryEventDuration
(data.frame)
) summaryEventDuration result.
countsAge
(data.frame)
) countsAge result.
countsSex
(data.frame)
) countsSex result.
countsYear
(data.frame)
) countsYear result.
cdmSourceInfo
(data.frame
) cdmSourceInfo result.
analyses
(data.frame
) Analyses result.
arguments
(list
) Named list of arguments used.
filePath
(character
) File path to either a directory or zip-file, containing the csv-files.
saveAsZip()
Save the results as a zip-file.
TreatmentPatternsResults$saveAsZip(path, name, verbose = TRUE)
path
(character(1)
) Path to write to.
name
(character(1)
) File name.
verbose
(logical
: TRUE
) Verbose messaging.
self
saveAsCsv()
Save the results as csv-files.
TreatmentPatternsResults$saveAsCsv(path, verbose = TRUE)
path
(character(1)
) Path to write to.
verbose
(logical
: TRUE
) Verbose messaging.
self
uploadResultsToDb()
Upload results to a resultsDatabase using ResultModelManager
.
TreatmentPatternsResults$uploadResultsToDb( connectionDetails, schema, prefix = "tp_", overwrite = TRUE, purgeSiteDataBeforeUploading = FALSE )
connectionDetails
(ConnectionDetails
) ConnectionDetails object from DatabaseConnector
.
schema
(character(1)
) Schema to write tables to.
prefix
(character(1)
: "tp_"
) Table prefix.
overwrite
(logical(1)
: TRUE
) Should tables be overwritten?
purgeSiteDataBeforeUploading
(logical
: FALSE
) Should site data be purged before uploading?
self
load()
Load data from files.
TreatmentPatternsResults$load(filePath)
filePath
(character(1)
) Path to a directory or zip-file containing the result csv-files.
self
plotSunburst()
Wrapper for TreatmentPatterns::createSunburstPlot()
, but with data filtering step.
TreatmentPatternsResults$plotSunburst( age = "all", sex = "all", indexYear = "all", nonePaths = FALSE, ... )
age
(character(1)
) Age group.
sex
(character(1)
) Sex group.
indexYear
(character(1)
) Index year group.
nonePaths
(logical(1)
) Should None
paths be included?
...
Parameters for TreatmentPatterns::createSunburstPlot()
htmlwidget
plotSankey()
Wrapper for TreatmentPatterns::createSankeyDiagram()
, but with data filtering step.
TreatmentPatternsResults$plotSankey( age = "all", sex = "all", indexYear = "all", nonePaths = FALSE, ... )
age
(character(1)
) Age group.
sex
(character(1)
) Sex group.
indexYear
(character(1)
) Index year group.
nonePaths
(logical(1)
) Should None
paths be included?
...
Parameters for TreatmentPatterns::createSankeyDiagram()
htmlwidget
plotEventDuration()
Wrapper for TreatmentPatterns::plotEventDuration()
.
TreatmentPatternsResults$plotEventDuration(...)
...
Parameters for TreatmentPatterns::plotEventDuration()
ggplot
clone()
The objects of this class are cloneable with this method.
TreatmentPatternsResults$clone(deep = FALSE)
deep
Whether to make a deep clone.